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THE AXISYMMETRIC PROBLEM OF TRANSFERRING A LOAD TO A 
VISCOELASTIC ORTHOTROPIC BODY BY MEANS OF AN ELASTIC ROD* 

T.S. KAGADII and A.V. PAVLENKO 

The problem of transferring a load by means of an elastic rod to a 
viscoelastic orthotropic body possessing cylindrical anisotropy, is 
studied. An asymptotic method /i, 2/ is used, which is generalized in 
the first part of this paper to the case of viscoelastic media. 

When the problem of the adhesive strength of a fibrous composite 
material is solved, an important role is played by the problems of 
transferring the load to three-dimensional bodies by means of 
reinforcing elements. Such problems have not been studied sufficiently 
even in the elastic domain, due to considerable mathematical 
difficulties /I, 3-5/. 

|. Let us consider a viscoelastic orthotropic body with cylindrical anisotropy. When 
the load is axially symmetric, the stress tensor and displacement vector do not depend on O 
and are functions of the coordinates r, z (r, 8, z are cylindrical coordinates and the z axis 
coincides with the axis of anisotropy). In this case the problem splits into two independent 
problems. The problem of deformation in which there is no component of the displacement v 
(but we have, of course, the normal stress ~ss), and the problem of torsion. Let us consider 
the first problem. 

The relations connecting the deformation and the stresses in an orthotropic viscoelastic 
body with cylindrical anisotropy in which there is no component of the displacement v, are 
written as follows: 

e n = s, -- vnss -- vI~3 (IA) 
t 

s,=-ET(,,,+ K 1 , ( t - - ~ ) a , , d ~ ) ,  i = t , 2 , 3  

t 
i 

e l s = - - ~ - ( . l S - ~ - S K ( t - - ~ ) . , s d ' ~ ) ,  e l , = e , s = O  
0 

To obtain ess , ess, it is sufficient to carry out a cyclic permutation of the indices in 
e n, and here we have 

~lsEl = VslEs, vssEs = vssEs, vsxEa = vxsE, 
K,s =Ks,, Ks8 =K~, K31 =Kls 

Here E I, Es, Es (G) are the instantaneous elasticity (shear) moduli, v:j are Poisson's 
ratios, a**, ass, ass (o,s = asz ) are the normal (tangential) stresses, K~j(t--z) are the 
creep kernels and t is the time. Relations (i.i) hold in the case of tension, as well as 
compression. We use the following analytic expressions /6/ to approximate the creep kernels: 

K,j  (t - -  x) = k l j  (t - -  x)~lj-' exp [ - -~ , j  (t - -  T)] 
K ( t - - ~ )  = k ( t - - ~ ) ~ - * e x p [ - - ~  ( t - - x ) ]  ( O < ~ u ,  c ~ < i )  

(t .2) 

The deformation tensor components are expressed in terms of the pro3ections u, w of the 
displacement vector, according to the formulas 

au u Ow Ow Ou (1.3) eu= ~-' e'z=-F' ess=-~--z ' els=~ +~%- 

After applying Laplace transformations to relations (1.1) and (1.3) and constructing the 
differential equations in the usual manner, we arrive at the problem of integrating a system 
of equations analogous to (I.i) of /i/, where the parameter 8 has the form (F (~) is the 
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Gamma function) 

e = elF (p; k, a,  [5)/F (p; ku ,  a u ,  ~'u) 
e~ = G/Ex, F (p; k, a ,  ~) = [1 + k r  (a) (p + ~)-~]-1 

(1 4) 

In carrying out the asymptotic analysis of the resulting equation we use, as in /I/, the 
small parameter 8. The parameter will indeed be small if 81 is small, since the coefficient 
accompanying ~, in expression (1.4) is of the order of unity for any value of the parameter 
p. 

It follows therefore, that, if we use the difference creep kernels (1.2), then we can 
split the stress-deformation state into two components, each with 

, different properties, also in the case of axisymmetric problems of 
linear viscoelasticty of orthotropic media. The complete solution of 
the problem will be sought in the form of a super-position of both 
components, and the determination of each component will be reduced to 
solving the boundary-value problems for a single function. 

2. Let us now consider the problem of transferring an axial load, 
by means of an elastic rod, to a viscoelastic orthotropic body with 
cylindrical anisotropy. The rod is inserted into the body so that it 
is perpendicular to the boundary plane, and its middle line coincides 
with the z axis (Fig.l). The area F of transverse cross-section of 
the rod is fairly small, i.e. its radius a is fairly small. We require 
to determine the law of distribution of contact stresses between the 
rod and the half-space, when a concentrated force P0 is applied to 
the end point of the rod z = 0 at the initial instant of time, 
directed along the rod axis and remaining constant from then on. 

The problem in question is solved in mappings as in /i/, and the 
displacement transform will have the form 

2P o t I Ko(r~s) cos zs ds 
F i g .  1 ~ '  (r, z, p) --  ~EF p _ s [sKo (a~s) + gKt (a~s)] 

g = 2aaGF (p; k, ~, ~) o/(EF) 

Here Ko (x), K~ (x) are modified Bessel functions, and the integration in s is carried 
out everywhere from 0 to oo. The transforms of the force within the rod N. = EF (dW/dz) l~=a 

and of contact stress T. = 2naGF (p; k, ~, ~) (dW/dr) [r=a are given by the formulas 

N . ( z , p )  2Poa p j ~  s l  C" sinzs d (2.1 i 

2Po" g I cos zs ds 
a', (z, p) = :t p g + sM-* (s) 

M (s) = K 1 (a(os) /K o (acos) 

Using an inverse Laplace transformation we can successfully reduce the contour integral 
to an ordinary, non-singular integral, using the method given in /6/. The asymptotic ex- 
pressions for the force shown for small and large values of time, can be written in explicit 
form provided that their transforms can be written in the form of a series in the small par- 
ameter 8, depending on p 

T ,  (z,  p) = [T O (z) + T I (z) ~ ,  + T~ (z) e ,  2 + . . . l /p  (2 .2)  

where T is understood to represent either the force N, or T. 
If the material of the half-space has predominant shear creep (k,j = 0) and a ~ I, then 

o) = o%[(p + ~ + k ) / ( p  + fi)]'/,, g = g o [ ( p  + ~ ) / ( P  + ~ + k ) ] ' / '  
co o = (Ea/G)'/,, go = 2zta (EaG)'/,/(EF) 

In this case we have in series (2.2) for large values of the parameter p (which corre- 
sponds to small values of the time t) e, = k/(p + ~), and for small values (corresponding to 
large time values) , 8. = Ap/(p + ~), A = --k/(~ + k). 

Passing to the original in (2.2) we obtain, for small values of time, 

T (z, t) = To (z) + "rio (z) (k/~) (l - -  e-~t) -~- . . . (2.3) 

where we have, for the force N (z, t) within the rod, 

2Po ~ sin zs 
T O (z) = - 7  J s +~oM-~o (s) ds (2.4) 
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2Po I [goa~o~ [1 - -  Mo s (s)] + 2goMo (s) s in  z s  ds  
Tlo (z) = ~ 2 [s + goMo (s)]' 

and for the contact stress T (z, t) we have 

2Pogo i cos zs d s  
T O (z) = ~ go -F- sMo I (s) 

2Pogo ~ aCOoS 2 [1 -- MO~ (s) -- 2sMo 1 (s)] 
TlO (~) 

----K--- ~ 2 [go + sMol (s)]' 

M o (s) = K I (acoos)/K o (SOloS) 

cos zs  ds  

(2.5) 

60 o 

large values of the coordinate z, analogous to the elastic problem in /i/. 
when t = 0 and the coordinate z is small, we obtain 

N O (z) = - ~ -  (s in  z ,  ci z ,  - -  cos  z 1 si  z,) ,  z x = go z 

2Pogo 
% (z) :~ (cos z 1 ci z I + s i n  z ,  s i  z,)  

The coefficients T20 (z) .... are not given here because of their bulk. 
At large values of the time, (2.2) gives 

T (z, t) = T® (z) + T , ~  (z) h e  -~t + . .  • (2.6) 

H e r e  Too (z), T ,=  ( z ) , . . .  a r e  f o u n d  f r o m  t h e  s a m e  f o r m u l a s  ( 2 . 4 )  a n d  ( 2 . 5 )  a f t e r  r e p l a c i n g  
b y  cooo, go b y  go~, a n d  o)oo = 6% (t  -~- k/[~)'l,, g~  = go (1 + k/B)- ' / , .  

The forces (2.3) and (2.6) can be represented by asymptotic expressions for small and 
In particular, 

(2.7) 

The limit forces (when t = 0) for small values of the coordinate z are also given by 
the formulas (2.7), but go must be replaced by g=. The manner in which the forces decrease 
at large values of z, is analogous to that in the elastic problem /i/. 

3. Relations (2.3) and (2.6) can be written in the form 

T (t) = a o + s i t +  . . .  ( t - ,  0),  T (t) = b o + bxe-# t + . . .  ( t - -~oo)  ( 3 . t )  

T h e  l i m i t i n g  i n f o r m a t i o n  s u p p l i e d  b y  ( 3 . 1 )  e n a b l e s  u s  t o  m a k e  a j u d g e m e n t  a b o u t  t h e  
behaviour of the corresponding functions at arbitrary times, provided that we use the two- 
point Pade approximant /7/. This approximant is a function of the form 

T ( t ) =  ~ +  % t +  p x e g t + . . .  (3 .2)  
I + 7J+ 6,e"t+ ... 

whose coef£icients are chosen from the conditions that expansion in series as 
t--~ 

o7 

~J 

yields the asymptotic expressions (3.1). These conditions yield 
t - ~  0 and 

/ 2/. - ~ - ~ "  ~-- 

0 ~/// 2 ~ 

0,2 oq z~ 

Fig.2 

ao = b o +  b,S,, a l =  bo~,, ~, = bob , 

=--~+~--a0 ' 

~* = ( ~ - -  ao) (~  + ~ - -  ao) 

The Pade approximant (3.2) indeed enables us to "match" 
the limit expressions (3.1) and to find the regions of "small" 
and "large" values of time. 

Fig.2 shows the results of calculating, according to 
formulas (2.7), the conditions within the rod N* = N / P  o 
and the contact forces ~* = T/(Pogo) and t ~ 0 (curves I 
and 2 respectively), and at t= do (curves 3 and 4). The 
insert in the upper right corner shows the variation in the 
force N* with time when z, = 0.2. The dashed curves I and 
2 were constructed using the formulas (3.1), and the dot-dash 
curve was obtained using the formula (3.2). The computations 
were carried out for k = 2,5, ~ = 0.5. 
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THE COMBINED PROBLEM OF THERMOELASTIC CONTACT BETWEEN TWO PLATES THROUGH 
A HEAT CONDUCTING LAYER* 

v.v. ZOZULYA 

The problem of the contact between two plates under the action of a 
force and temperature field is formulated. It is assumed that when the 
plates are deformed, the conditions of heat exchange between them also 
change. The equations of motion and heat conduction of the 
thermoelastic plates, as well as the ec~/ations of heat conduction of the 
heat conducting layer are derived by expanding the three-dimensional 
equations in series in Legendre polynomials. The equations of the n-th 
approximation are constructed and the equations of the first 
approximation are studied in detail. 

I. For'f~,Gt~,on of t~ pPob~e~l. We consider two plates (1 and 2) of arbitrary contour 
and constant thickness A I and h~, respectively, situated, in an initial undeformed state, a 
distance h 0 apart. We shall assume that h 0 is commensurable with the flexures of the plates, 
and we will assume the flexures to be small. A heat-conducting medium is enclosed between 
the plates. The medium does not resist their deformation, and heat exchange within it is due 
to its thermal conductivity. Let ~y(~ = I, 2) be the regions occupied by the median surfaces 
of the plates, aQy their boundaries, Qy+ and Q~ the upper and lower surfaces of the 
plates, and Fy the side surfaces. 

The thermodynamic state of the system, including the plates and heat conducting layer, is 
defined by the following parameters: ~i/(v)(x~,t), e,/(y)(x~,t), ui(v)(x~,t) (~,],k = 1,2,3; ~ : 1,2) 

are the components of the stress and deformation tensors and displacement vectors of the 
plates, and Yy(x~, ~, Xv(X~, t), T. (zk, t), X. (z~, t) are the temperature and specific strength of 
the internal heat sources in the plates and the layer, respectively. The boundary conditions 
written in terms of the stresses and conditions of heat exchange with external medium and 
with the heat conducting layer are specified at the end surfaces Qy + and ~v- • The boundary 
conditions at the sides consist of mechanical and thermal conditions and depend on the way 
they are clamped and on the heat exchange conditions. The distribution of the displacements, 
velocities and temperature in the plates and the layer at the initial instant t = 0, are 
known. 

The external forces and temperature fields acting on the plates cause them to bend 
towards each other, and the plates may come into contact. This is accompanied by the appear- 
ance of a previously unknown zone of dense contact Q,(t) = ~i- N Qz + changing with time, 
within which the contact forces of interaction qi(za, t) (t = 1,2, 3; ~ = 1,2) appear and contact 
heat transfer occurs. The problem therefore consists of determining the stress-deformation 
state and the temperature fields within the plates, the region of dense (complete) contact 
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